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Abstract
Creating mathematical diagrams is essential for both devel-
oping one’s intuition and conveying it to others. However,
formalizing diagrams in most general-purpose tools requires
painstaking low-level manipulation of shapes and positions.
We report on early work on PENROSE, a system we are
building to automatically visualize mathematics from no-
tation. PENROSE comprises two languages: SUBSTANCE, a
domain-specific language that mimics the declarativeness of
mathematical notation, and STYLE, a styling language that
concisely specifies the visual semantics of the notation. Our
system can automatically visualize set theory expressions
with user-defined styles, and it can visualize abstract defini-
tions of functions by producing concrete examples. We plan
to extend the system to more domains of math. [1]

1. Separating SUBSTANCE and STYLE

To formalize a mathematical diagram in a general-purpose
tool, one must lower one’s high-level domain-specific un-
derstanding of the diagram’s semantics into the weeds of
styling details. A general-purpose illustration tool like TikZ
has no notion of the domain a user is trying to illustrate, so
it exposes total control over display attributes such as shape,
color, and position. At this level, it is very difficult to illus-
trate multiple objects in a domain without duplicating code,
and difficult to cleanly illustrate an object in different ways.

To raise the level of abstraction for creating illustrations,
users often define parametrized macros or write libraries to
translate domain-level descriptions to diagrams. For exam-
ple, TikZ users have created thousands of ad-hoc domain-
specific languages to model domains like commutative di-
agrams and Bayesian networks. However, these DSLs lack
the affordances of full-blown programming languages, such
as domain-level type-checking and consistent syntax.

PENROSE aims to provide a principled, extensible domain-
specific illustration environment for mathematics. To enable
users to create and edit diagrams at a semantic level, PEN-
ROSE enforces a clean separation between substance and
style. This separation takes the form of two languages, SUB-
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Set x {
    shape = Circle { }
    ensure x contains x.label
}
NoIntersect x y {
    ensure x nonOverlapping y
}
Subset x y {
    ensure y contains x
    ensure x smallerThan y
    ensure y.label outsideOf x
}
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Set x { shape = Text{ } }
Subset x y {
    encourage y above x
    encourage x sameX y
    shape =  Arrow {
        start = x.shape
        end   = y.shape
        label = None
    }
}
Set x, Set y { 
    encourage x repel y 
}

Set A, B, C, D, E, F, G
Subset B A
Subset C A
Subset D B
Subset E B

Subset F C
Subset G C
NoIntersect E D
NoIntersect F G
NoIntersect B C

(a) Substance program: sets.sub

(b) Venn diagram Style: venn.sty

(c) Tree diagram Style: tree.sty

Figure 1. Two STYLEs visualizing the same SUBSTANCE.

STANCE and STYLE, akin to HTML and CSS. SUBSTANCE
models mathematical notation, and STYLE defines the visual
semantics of the notation: how the objects and relationships
declared in SUBSTANCE are translated into images.

Figure 1 shows how one might use PENROSE in the do-
main of set theory. Here, we illustrate one set theory expres-
sion with two visual representations. The SUBSTANCE pro-
gram at the top of Figure 1 specifies the set objects and their
relationships. The two STYLE programs emphasize differ-
ent aspects of the relationship A ⊂ B, which is commonly
interpreted either as “A is spatially contained in B” or “A
implies B” (because if a point lies in A, then it lies in B).
The styles are generic, and thus reusable: they apply to any
SUBSTANCE program that includes sets and relationships.
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Figure 2. Automatic layout of nested sets.

2. Declaring the display with STYLE

Many problems in visualization can be cast as optimization
problems. Instead of hand-designing an algorithm to place
labels just right, one can simply write a function that takes
a diagram state and returns a number that measures the bad-
ness of the label placement. This badness function, typically
called an objective, can then be minimized using optimiza-
tion methods such as gradient descent, yielding a close-to-
optimal label placement or diagram state.

The design of STYLE leverages the insight that optimiza-
tion problems can be stated declaratively and solved gener-
ally. In a STYLE program, the user applies individual smaller
objectives to selected parts of a diagram, which the PEN-
ROSE compiler composes into an overall objective function
measuring the badness of the entire diagram. This objective
is minimized by the PENROSE runtime, which can lay out a
tree, a circle-packing, or indeed any layout that can be ex-
pressed as an objective. Using STYLE enables the user to tap
into the power of optimization-based layout without being
an expert in optimization or layout algorithms.

Consider the nested sets depicted in Figure 2. To create
those diagrams, a TikZ user would have to manually specify
the sets’ sizes and positions and ensure that every subset is
smaller than its container set. A PENROSE user can simply
create these diagrams by specifying which sets are subsets
of other sets in a SUBSTANCE program, then write a STYLE
program that reads like plain English.

Subset x y {

ensure x smallerThan y

}

The system compiles the style into an overall objective
function and can generate several layouts, shown in Fig. 2.

In general, the user can leverage STYLE’s pattern-matching
and binding mechanisms to select objects, which encour-
ages the resulting styles to be generic and reusable. Once
an object or relationship is selected, the user can concisely
specify its visual instantiation, as well as visual relationships
between selected objects.

We envision that libraries of STYLE programs will encode
the design expertise of skilled illustrators for all to read, use,
and remix. Because PENROSE can optimize any attribute that
can be expressed in terms of objectives, a creative user can
write styles that fine-tune diagram attributes beyond position
and size, such as global angle alignment and color harmony.

3. Illustrating abstract function definitions
Understanding functions is crucial to understanding math-
ematics. Many of the first definitions a learner encounters
in elementary discrete math involve properties of functions,
and these definitions continue to show up in more advanced
domains like topology and category theory.

One common object of study is the injective function. A
function is injective, or “one-to-one,” if every element of its
codomain is mapped to at most one element of the domain.
That is, a function f : X → Y is injective if:

∀x, x′ ∈ X, f(x) = f(x′)→ x = x′.

People often illustrate abstract definitions by example.
In this case, one common “cartoon,” which appears in text-
books and on Wikipedia, stylizes f as a set of mappings be-
tween elements of discrete and finite sets.
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Definition Surjection(Map f, Set X, Set Y):
    forall y : Y | exists x : X | f(x) = y
f: A -> B
Set A, B
Surjection(f, A, B)

Definition Injection(Map f, Set A):
    forall a1, a2 : A | f(a1) = f(a2) implies a1 = a2
f: A -> B
Set A, B
Injection(f, A)

Figure 3. Visualizing injective and surjective functions.

Given only this abstract definition of an injective func-
tion, written in SUBSTANCE, PENROSE can automatically
visualize injective functions in the same style (Figure 3). In
addition, PENROSE can automatically generate many con-
crete examples of injective functions, giving the reader a bet-
ter intuition for the definition (e.g. bijections are injections).

PENROSE can automatically visualize any function def-
inition on discrete, finite sets that is written in first-order
logic, such as function composition. The runtime finds con-
crete instances by calling the external tool Alloy [2].

We plan to design principled mechanisms for users to
extend PENROSE with domain knowledge. Users should be
able to incorporate external tools, like Alloy, and external
libraries, such as existing graph layout libraries, in every
stage of creating a visualization. For more information on
PENROSE, visit http://www.penrose.ink.
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